
570 

Hydromagnetic waves in a cylindrical plasma 

By L. C. WOODS 
Engineering Laboratory, Oxford University 

(Received 4 October 1961 and in revised form 27 February 1962) 

This paper contained several extensions of the theory of hydromagnetic waves 
in a partially ionized gas. The gas is confined in a cylindrical tube through which 
passes an axial magnetic field. The tube wall is assumed to be either a perfect 
conductor or a material of small or zero conductivity. 

The effects of the viscosity and compressibility of the ionized and neutral 
gases are included in the theory, as also are the contributions of finite con- 
ductivity and the ion-cyclotron term. The non-isotropic character of the vis- 
cosity and conductivity coefficients of the ionized gas is taken into account. 
New boundary conditions are derived for tubes with insulating walls, and it is 
shown that the only pure modes that can be propagated along such tubes are 
just two special cases of those waves having no azimuthal dependence. 

The principal result of the paper is a new dispersion relation which allows for all 
the dissipative effects just mentioned and which is valid for a range of frequen- 
cies which extends well beyond the ion cyclotron frequency, but falls short of the 
frequency at which electron inertia and displacement currents became effective. 

1. Introduction 
The hydromagnetic oscillations of a cylindrical plasma have been investigated 

by anumber of authors (Newcomb 1957; Stix 1957,1958; Lehnert 1959; Gajewski 
1959; and many others). Both Newcomb (1957) and Stix (1957) have investi- 
gated the effect of retaining the ion-cyclotron term in the generalized Ohm’s 
law and Piddington (1956) and Lehnert (1959) have allowed for the presence of 
neutral gas in the plasma. However, there does not seem to be general treatment 
of the problem in which all the dissipative and other second-order effects are 
present and in which the plasma is confined to a cylindrical tube. This paper 
does not deal with the most general case for it is assumed that conditions are 
such that the displacement current can be neglected in the plasma, but apart 
from this limitation it is more general than previous work. 

The extent to which the theory given below is valid at  frequencies at or near 
the ion-cyclotron frequency wCi is uncertain for in this region the usual expansion 
method of obtaining the transport coefficients from Boltzmann’s equation may 
break down. However, to the extent to which viscosity and resistivity can be 
ignored, the results are formally correct a t  w = wCi. The presence of the neutral 
gas, which eliminates the sharp resonance at the ion-cyclotron frequency, 
improves the range of validity of the theory. 

Present experiments (see Jephcott 1959 and Jephcott, Stocker & Woods 1961) 
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a t  A.E.R.E. (Harwell, England), involve discharge tubes with insulating rather 
than the conducting walls used in most of the American experiments (see 
Allen, Baker, Pyle & Wilcox 1959 and Wilcox, Boley & De Silva (1959). With 
insulating walls and negligible plasma resistivity there is some difficulty in 
satisfying the boundary conditions. The method chosen in Q 9 is to restrict the 
type of perturbation to either purely torsional or purely radial motion. It appears 
that other types of wave are not possible, unless a current sheet can form near 
the insulating wall. 

The main contribution of this paper is a very general dispersion relation 
(equation (37)) in which allowance is made for the non-isotropic character of the 
viscosity as well as for the compressibility of both the ionized and neutral gases. 
The manner in which the dissipative terms affect the waves at  frequencies close 
to the ion-cyclotron frequency is also investigated. The dispersion relation is 
rather involved algebraically, and so it was found desirable to calculate the 
various relations between wave velocity, frequency and the damping terms on a 
digital computor. These results will be presented and discussed later in a Culham 
Laboratory report. In a further paper (Jephcott & Stocker 1962), computed 
solutions of the dispersion relation are compared with experimental results 
obtained at A.E.R.E., Harwell; the theory is found to be in good agreement 
with experiment. 

2. Nomenclature 
The standard electromagnetic symbols B, j, E, p, and c, denoting magnetic 

induction, current density, electric field, inductive capacity and electrical 
conductivity, and also the standard gas-dynamics symbols v, p ,  p, u, and C 
denoting velocity, scalar pressure, density, kinematic viscosity and sound speed, 
all in rationalized M.K.S. units, are used throughout the paper. The vorticity 
vector V x v will be denoted by <. 

A subscript n on the gas dynamics symbols is used to distinguish neutral gas 
quantities, while the subscripts I and ,, are attached to the ionized gas transport 
coefficients v and c to denote values perpendicular and parallel to the steady 
magnetic field. The subscripts 0 and 1, when attached to dependent variables, 
denote steady and perturbation values respectively (see equation (1)). 

The wave frequency is w/2n.  The effective collision frequency between ions 
and neutrals is written as 2wi, for convenience, and it appears in the theory in 
the combinations h = win/w and E (pno/po) (w/u in) .  The ion-cyclotron frequency 
wCg and the Alfven speed v, = B,,/J(pp,)+ will emerge in the ratios Q 3 w/wd 
and kA 3 w/vA, the sound speeds in the ratios I? G C2/w2 and I?, = CE/w2, and the 
viscosities and resistivities in the ratios y = vjw and 6 = l/pcrw. We shall also 
find it convenient to introduce the numbers y' = yL - y,, and S' = 6, - S,, . 

Finally, n will be used to denote a unit vector parallel to the steady magnetic 
field B, along Oz, the axis of the plasma cylinder. 

It will be assumed that the plasma oscillates about an equilibrium position 
such that a typical dependent variable, A say, can be expressed in the form 

A(r, 8, z, t )  = A, + A,(r) exp ( i (m8 + Icz - wt)}, (1) 
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where A,, is the equilibrium value of A, rn is an integer, k is the (complex) 
propagation number and r ,  0, z are cylindrical co-ordinates. 

3. Basic equations 

Subject to the conditions described below, the equations for a partially ionized, 
viscous, compressible gas can be written (e.g. see Spitzer 1956 and Lehnert 1959) 

V x B  =,uj, (2) 

(3) 

(a/at+v.v)p = - C ~ ~ V . V ,  (a/at+v,.v)p, = -c:~,v.v,, (4) 

V x E = -aB/at, 

} (5) 

} (8) 

p(a/at + v .  0) v = - V p  + j x B -pw,,(v - v,) +pv . (V2v + QVV .v), 

p,(ajat + V, . v) V, = - vp, +pwin(v - v,) +pn V,(VZV, + QVV . v,), 

pi = gpl - p v .  (VV + QlV .v), 

j = Q . {E + v B - (B~/U,J (slat + v . v) v - v . pi - (V - v,), 
(6) 
(7) 

Q = e,(l - nn) + ell nn = el I + (ell - c,) nn, 

v = vL( I - nn) + q1 nn = v, I + (vll - vl) nn, 

where I is the idem tensor, g is the ratio of the ion temperature to the sum of the 
ion and electron temperatures, and pi is the tensor pressure due to the ions alone. 

In  addition to the basic assumption that the plasma can be treated as a fluid, 
the most important assumptions implicit in these equations are that (i) the 
electron-ion collision frequency is large compared with the frequency w defined 
in equation (1)-this permits us to drop the derivative of j from the generalized 
Ohm’s law, equation (6); (ii) the ratio of the electron mass to the ion mass can 
be neglected compared with unity; (iii) the momentum transfer between the 
neutral and ionized gases occurs wholly in ion-neutral collisions; (iv) the electron 
viscosity is negligible compared with the ion viscosity (see, for example, Marshall 
1960); and (v) the Alfvh speed is small compared with the speed of light, which 
permits us to drop the displacement current from (2). Lehnert (1959) has given 
equations for a partially ionized gas in which assumptions (i) to (iii) are not made, 
although he makes no allowances for viscosity. In  particular to eliminate (iii) 
it  is necessary to introduce terms pj, -pj into equations (5), where 

B = (mele)  (wen- -Win), 

me is the electron mass and e its charge. However, it  is apparent from the rows 
labelled p in tables 4 and 5 of Lehnert’s paper that this term will contribute very 
little to the interaction. 

The electrical conductivity and kinematic viscosity of the ionized gas have been 
assumed to be tensors to allow for the different values these numbers have in the 
transverse and magnetic field directions. Writing (6) in the form j = a. Aand using 
(8) we have 

j = uIA + (ell - el) nA,, j ,  = ell A,, 
thus j = Ucll - cl)bl1} jzn + alA9 (9) 

a form we shall use below in place of (6). 
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We are interested in calculating the small perturbations from the equilibrium 

state B, = Bon, j, = v, = vno = 0, pno, po and p,, pno constant, (10) 

caused by the waves having the form indicated in equation (1) .  This form enables 
us to write n .V  = i k ,  so that, for example, 

( V x B , )  x n = n . V B , - V ( n . B , )  = ilcBl-VB1,, 

a type of reduction frequently used below. 

that the equations for the perturbations can be written 
On ignoring second-order terms in the perturbations, we find from (1)  to (10) 

j, = pw~L~ljl~n+c+,(E,+B,v, x n  

(1 + ih - iy,V2) v1 + iy'nV2v,, - Qy'knV . v1 + (r - giyJ VV . v1 
+iB,~(1+ih)v ,+B,h~V, , - (B, /p ,w, i )  V * pi,}, (13) 

= ihv,, - (wk/B,k;) B, - (iw/B,k;) VB,,, (14) 

v1 = (Q - iaVV . ) vnl, (15) 

where a =[(rn-Qiyn),  Q 1-iC;-(ynV2, (16) 

and we have taken advantage of (1 1) and the linearized forms of (4) to eliminate 
jl, PI and Pnl. 

4. The dispersion relation 
Relations (1 1) to (15) are five vector equations for the five unknowns B,, v,, 

El, j, and vnl. The term V . pil in (13) can be expressed in terms of v1 and g by 
the linearized forms of (4) and (7); thus, provided we know the temperature ratio 
g, we have sufficient equations to solve our perturbation problem. The boundary 
conditions will be discussed later. 

The method of solution which appears to involve least algebra is to use (13) 
and (15) to eliminate El and vnl, and then by some further differentiation reduce 
the remaining equations to four scalar equations relating the axial components 
Bls, jlz, v,,, and c,,. As j,, = (n . V x B J / p ,  and c,, = n . V x v,, we see that this 
choice has a kind of symmetry between the pairs of electrical and fluid variables. 
Further differentiation enables us to reduce the four scalar equations to a single 
differential equation for any one of the four axial components-they all satisfy 
the same complicated differential equation. The required dispersion relation 
then follows on showing that the equation is satisfied by a Bessel function. 

First, we shall use (14) and (15) to derive a relation between vlZ and B,,. On 
eliminating vnl by (15) we get an equation which can be written in the form 

Pv, + R . V V v ,  + iy'nQV2vlz + iay'kV2Vv,, - Qy'knQV . v1 

= - ( w k / B , k ~ ) & B , - ( i w / B , k ~ )  (Q-iaV2)VB,,, (17 )  

where P Q + ih(& - 1) - irl&Vz, 

R = (I? - QiyJ Q - ia( 1 + FV2) - $ayLV2 + ah - $ay'k2. 
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The scalar product of (17) with n gives 

{P + iy'(Q + iak2) V2} v,, + ik{R + +if&} V . v1 = - ia(wk,/B,k;) V'JB,,, 

while its divergence is 

(P+RV2-@kv'Q}V .v,-ky'V2(Q-iaV2)vl, = - (iw/B,k;) (Q-iaV2)V2B,, 

and on eliminating first V . v1 and then B,, from these two equations we arrive at 

and 

B0i&L~,, == -0kMv~B1,  

k M V  .vl = iNv,,, 

where L E {P + iy'(Q + iak2) V2} (P + RV2- +ik2y'Q} 

+ ik2y'{R + +iy'Q} {Q - iaV2}V2, 

{R + +iy'Q} {Q - iaV2} + ia{P + RV2 - +ik2y'Q}, 

{P + iy'QV2} {Q - iaV2}. 

M 
N 

Equation (19) is the required relation between wlz. and Bls, and (20) will be used 
below to eliminate V . v,. 

The second of the four scalar equations relating axial components also follows 
from (17). From the z-component of the curl of (17) we get 

Bok% P C i z  = - wICILQjiz* (22) 

To find the third scalar equation we first eliminate j,, El and v , ~  from (13) by 
operating on it with V x (Q -iaVV .) = QV x and then using (II), (12) and (16). 
The resulting equation involves V.vl, which can be eliminated by (20), and 
V x V . pi,, which can be eliminated by the following relation. The divergence of 
the linearized form of (7) is 

v . pi1 = V(gp,) -pov. (V'JV,+ gvv .VJ, 

hence 

The result of these operations is 

V x V . pil = -po{vLV2q, - (v,, - vL) n x V(V2v,, + +ikV. v,)}. 

kuQ(1 -iSLV2) M B , + i p w d ' k M Q n  x Vj,+ B,k2QMv,- B,QNnv,, 

= -kB,Q{MP~,-iy'Q(MV~-QN)nxVv,,). (23) 

If we now use (19) to eliminate B,, from the axial component of (23) we get our 
third scalar equation, viz. 

(24) 

The final equation is obtained by eliminating V .vl and j,, by (20) and (22) 
from the z-component of the curl of (23). In this calculation it is necessary to 
make use of the result n . V x = n . V x (V x v,) = n . VV . v1 - V2vlz. We find that 

Q((k2N - N) V2- k% L( 1 - iS,V'J)} vls = - kQPMV'JCu. 

kQQXv,, = { k 2 Q - k ~ P ( 1  +iS'kz-iS,,V2)}M~,,, (25) 
where 

8 3 P(P + RV2) + iy'($PV2(Q - iaV2 - giak2) +- (MV2 - in) (V2 + k2)}. 
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If this equation is used to eliminate cl, from (24) and (25), there results 
FQv,, = 0, where 

{k2Q - k 3'5 P( 1 + is'kz- iS,,V2)} {k%L( 1 - iS,V2) + ( N  - k2M)  V2} - k2Q2PXV2. 

If either Qvla = 0,  or Pvlz = 0, the differential equation for v, wil l  be satisfied, 
but from (16) it follows that the former cannot be generally true, so that the 
simplest differential equation for vb is 

Pv,, = 0. (26) 

It follows from (19), (22) and (24) that j,,, B,, and clz also satisfy this (sixteenth- 
order) differential equation. 

One method of finding solutions of (26) is to assume that V2x = ax where x 
is one of v,, j,, B, and cis, then this leads to a solution provided a is one of the 
roots of 

{L2Q, - k: Pa( 1 + i#k2 - is,, a)} {k5 La( 1 - isla) +- (N, - kzM,) a} 

= k2QzP,Saa, (27) 

where Pa, Q,, . . . , etc., denotes the result of replacing V2 by a in the operators 
P , Q ,  .... 

To solve V2x- ax = 0 in a convenient form we set 

-a = k2,+k2, 
and use (1) to find that 

hence x = AJm(kcr), 

retaining only that solution which is finite at  the origin. Let a,, i = 1,2, . . . , 8  be 
the roots of (27) and k,, be the corresponding values of the constant L, defined in 
(28), then a solution of (26) is 

8 

i= 1 
x = Z Ai Jm(kcir), 

where Ai are constants. The constant L, introduced in (28) depends on the 
boundary conditions. On eliminating a from (27) and (28) we arrive at the 
dispersion equation which will be investigated in some detail in 0 8. 

The above theory enables us to write 

(30) 
kcgJm(kc BIZ = k&Jm(kcr), VlZ = 

~ j 1 z  = kcgJm(kcr), = kcQJm(kcr1, I 
where A?, 9, %', and 9' are constants related by 

okMa&A? = -B,k:I'L,a, B O k 5 P , 9  = -wkQ,V, 

I'Q,{(kzM, - N,) a - k5 La( 1 - isla)} B = - L M a a P a 9 ,  

I'kQQaHa37 = M,{k2Q, - k2P,( 1 + i#k2 - is,, a)}Q, 
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which follow on substituting (30) into (19), (22), (24) and (25). Thus only one of 
the four constants introduced in (30) is independent. The dispersion relation is 
the condition that (31) have no zero values for these constants. 

The axial velocity of the neutral gas velocity can be computed as follows. 
From the axial component of (15), the divergence of (15) and equation (20)  
we find that 

and 

Hence ifvnl, is expressed in the same form as adopted for v12 in (30), we find from 
(32) that 

where LB, relates to the neutral gas. The curl of (15) gives 
the coefficient 9n for the neutral gas, corresponding to 9 in (30), is 

{M(Q - iaV2) - i aN)  vlZ = M(Q - iaV2) QvnlZ, 

k{M(Q - iaV2) - i aN)  V . v,, = iQNv,,. 

LBm = LB{Ra + +if(&, - 4iaa - iak2))/M,, 

(32)  

(33) 

(34)  

= Qr,,, and hence 

g n  = g / Q a -  (35) 

5. Calculation of transverse components 
Once the solutions for the axial components of B,, j,, v1 and rl are known, the 

transverse components, i.e. the components in the radial and azimuthal direc- 
tions, are easily derived. The theory is as follows. 

We have V.B, = 0 and n .V  x B,  = pjlz, i.e. 

so B,, + iB,, = ir-(m+l) rm+l (pj,, - kB,,) dr. s 
From (30) and the result Jxm+lJ,(x) dx = xrn+lJm+,(x) it now follows that 

B, + iB,, = iVJ,+,(kcr) - ikdJm+,(kCr). 

B, - iB,, = iVJm-l(kcr) + ikdJ,-,(kcr). Similarly 

On adding and subtracting these results and using the relations 

( 2 4 - 4  JW = J,-,(x) + Jm+1(4, 2 J 3 d  = J,-,(4 - J.+l(X),  

we get 

B,, = (i%m/kcr)Jm(kcr) + i k d J k ( k c r ) ,  B,, = -VJL(kCr) - (km/kcr)dJm(kcr) .  
(36) 

With V . V, calculated from (20), we find from a derivation similar to that just 
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From (36) and V x B, = pj17 we get 

577 

and by a similar method we could calculate Clr and Clo from (37), but these will 
not be required below. 

We can calculate the electric field as follows. The axial component of (13) gives 

El, = vr1jlS- iB,Q( 1 + ih) wls- B,hfiv,, + (Bo/pOwci) n .V . pil, (39) 

and the last term of this equation can be expressed in terms of vl, and g as 
indicated at  the beginning of 0 4. Equations (30) and (34) now permit us to express 
the right-hand side of (39) in terms of the known solutions for j,, and vlB. This is 
a very complicated equation but fortunately it is not required below. The trans- 
verse components of El then follow from V x El = iwB,, which gives 

6. The field external to the plasma 
In  order to apply boundary conditions to the plasma it is necessary to calculate 

the magnetic and electric fields outside the plasma cylinder. We shall assume no 
displacement currents and a conductivity ge in the material or space external to 
the plasma. In  this case equations (1 1)  to (15) reduce to 

V x BT = pveE;, V x Ef = i w B f ,  

the superscript e denoting external field values. Thus 

(“2 + i~pv , )  B; = 0, 

and on solving this by a method similar to that used for V2x = ax, we find 

(41) I B1r - - - ikFKm(Kr)  - ipv,(m/k-r) 3’K,(Kr), 

= (km/Kr)Fh’,(Kr) +,uge59Kk(w), 
23% = K S K , ( K r ) ,  

where 
conditions. The axial component of the electrical field is found to be 

= k2 - iwpa,, and 3’ are constants to be determined by the boundary 

Ef, = K59Km(m), (42) 

then the transverse components can be written down by an application of (40). 
If the plasma is surrounded by an infinitely conducting wall, then the electric 

field Ef must be zero. It follows that Bf = 0, and we have the special case of (41) 
in which 

F = 3 ’ = 0 .  (43) 
37 Fluid Mech. 13 
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7. The boundary conditions 

persion relations, say 
For a plasma of given physical characteristics, (27) and (28) yield eight dis- 

f , ( k , ~ ,  kc,) = 0 (i = 1,2, ..., 8) ,  (44) 

in which we are free to choose only one of the k, to satisfy the boundary con- 
ditions; suppose this is kcl, then, for a given o, k follows fromf, = 0,  and then 
ka, . . ., kc8 follow from the remaining seven equations of (44). At least one of the 
constants Ai in (29) will depend on the initial conditions, so that in general the 
seven ratios of these constants have also to be assigned. Thus adding to these 
ratios and kc, the two constants appearing in (41), we arrive at a total of ten 
parameters so far undetermined. In  general these parameters will be complex 
numbers. 

Let P, be the degree of (27) in a (P, = 8 in the general case, but less in special 
cases), then P, is the number of propagation modes, and if the number of boun- 
dary conditions is Nb, a unique wave can be transmitted along the tube only if 

Nb = Pm+2. (45) 

If Nb exceeds this value no wave is possible. 
Turning now to the boundary conditions, we shall assume for the moment 

that on the tube wall, r = ro, there is a current sheet vector jT and an electric 
dipole layer of strength 7,. Then integration of (2) to (5) over a thin boundary 
layer on the tube wall leads to the following boundary conditions for the per- 
turbations: 

(46) 

(47) 

where [XI denotes the jump in X across the boundary. (For the theory of double- 
layer distributions see Stratton 1941, p. 188.) Equation (5) also yields the con- 
tinuity of the sum of the material and magnetic pressures across the boundary, 
but at a solid boundary these conditions can be dropped as the boundary itself 
provides any required balancing stresses. From the first of (40) we see that (47) 

(50) 
is equivalent to 

[%I = 0 

and V31el = - (imlroso) 71. (51) 

Thus if j: and T, are zero, (46) and (48) to (51) provide ten boundary conditions, 
i.e. Nb = 10, and waves composed of less than eight modes cannot be transmitted. 

With highly conducting walls the conditions in (43) must be added, which 
would increase Nb by two. However, in this case a current sheet is likely to occur, 
when (46) imposes no restriction, but just serves to d e h e  jT, and Nb remains 
unchanged. 
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If the gases are assumed to be inviscid the four conditions in (49 )  can be 
dropped. The first condition in (48 )  can be neglected if the parameterp, defined by 

(here y is the ratio of the specific heats) is small. Then on assuming that C, is 
not large compared with C, the second of (48)  can also be neglected. The following 
table sets out some important special cases. 

Case G a ab ac abc abcd ace abce abcde 

p m  8 6 5 4 3 2 3 2 1 
NIJ 10 8 7 6 5 4 6 5 4 

a = zero neutral gas viscosity, 
b = zero neutral gas pressure, 
c = zero ionized gas viscosity, 

d = zero ionized gas pressure. 
e = zero resistivity, 
G = general case, 

Here Nb is calculated assuming that T~ = 0, and that there is a current sheet on 
highly conducting walls. Notice that (45 )  is satisfied except for the cases in- 
volving zero resistivity; this is because the absence of resistivity does not reduce 
the number of boundary conditions, at  least in an obvious way (but see footnote 
on p. 580).  

Now the experimental conditions usually achieved are close to the condition 
abcde; pressure and resistivity appear as second-order effects, modifying the 
wave velocity and attenuation rather than providing new modes, and it seems 
unreasonable to evoke second-order modes in order to satisfy (45) .  However, the 
experimental evidence is that hydromagnetic waves cam be propagated along 
both insulating and conducting tubes. Fortunately there is another method of 
satisfying (45) ,  namely, that of postulating the presence of an electric dipole 
layer on the wall. This hypothesis is physically reasonable as plasmas do tend to 
shield themselves from external electric fields (or their absence) by surface charge 
separation. Accepting this we can discard (51 )  as an effective boundary condition, 
and we are then left with (for the case abcde) 

Unfortunately this fails with insulating walls, for if ge = 0,  (40 )  to (42 )  show that 
B,1 depends only on 9, and there are therefore only two constants available to 
satisfy the three conditions just given (in which j; = 0). We shall return to this 
point below. 

With highly conducting walls jf + 0, and only the first condition is effective. 
From (36) ,  (41 )  and (43 )  the condition in this case can be written 

If we make the further restriction that the ion-cyclotron effect is negligible, 
i.e. Q w 0,  it follows from (39), (42 )  and (43 )  that both El, and E& are zero, so 
that (51)  is satisfied without a dipole layer beingrequired. On the other hand when 
i2 + 0,  theseequationsshow that El, + 0, so that there must be a discontinuity 
in the tangential electric field at the wall. This connexion between the presence 
of a dipole layer and the ion-cyclotron effect arises because the differing Larmor 

37-2 
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radii of the ions and electrons inevitably leads to some charge separation at  the 
boundary. 

In  other cases jf is zero? and our boundary condition becomes B,, = B;,, 
B,, = Belo, B,, = B;,, and on eliminating 3 and 9 from these and (41) we arrive 
at a single relation between B,,, Bls and BIB. As pj,, = (im/r) B,,-ikBlo, this 
boundary relation can be written 

mpj,, = K ~ ~ ~ X ( B ~ , + ~ X B , ~ )  + ( m 2 q u ~ e / r ~ ~ 2 )  = #ge, a t  r = ro, (54) 

where fl is a constant, and 

x = ( k / K )  z n ( K ~ o ) / ~ m ( K r o ) .  ( 5 5 )  

From (30), (36), (38) and (54) we can write down a boundary relation like (53) 
for the case when ve is finite and non-zero. However, if the walls are insulating, 
a, = 0, and (54) splits into the two boundary relations 

pj,, = i((m/ro)Bl,- kB1,) = 0, BIT+i~oB1, = 0, (56) 

where xo Kk(kro)/Km(kro). As these cannot both be satisfied by a single value 
of k,, we conclude that, in general, with insulating walls a pure mode cannot be 
propagated, unless a current sheet forms at the wall (see footnote below). 
However as described later, there are special cases in which only one of (56) 
need be satisfied. 

8. Negligible viscosity and pressure 
This special case, which corresponds to the experimental conditions, will now 

be considered further, Put yl,, yL, yn, r, and r zero in (16), (18) and (21) and 
there results a = 0, R, = 0,  illa = 0, Pa = l+h[-i&,- 

(57) 
La = Pt,  Na = sP~, 8, = Pt,  

Ma szP;+b - rNa sP: 
Ma s2Pt+b’ rLa P i  ’ 

- 

where 

and 9 = po/(po+pno) is the degree of ionization. With these values (27) reduces 
to the quadratic in k2, 

{sk2-k;(l  +is,k2+isllk~)}{s(k2+kc2) -&[l +iS,(k2+k:)]}  
= k2(k2 + k:) Q2. (60) 

7 There is always the possibility that a consequence of small resistivity is the presence 
of a current sheet on the edge of the plasma regardless of the nature of the walls. If this 
is so, (53) is the boundary condition in all cases, and the distinction between insulating 
and conducting walls vanishes. This seems rather unlikely in experiments because one 
expects the conductivity to be rather lower in the gas adjacent to a cold wall. This point 
can only be resolved by experiment; here we shall pursue the consequences of there 
being no current sheet on insulating walls, as the other case is covered in the highly- 
conducting-wall treatment. 
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Let s,, - s2 denote the real and imaginary parts of s as given in (59)  and write 
h s2,-Q2, k , - ~ , k % ,  2 f2 _= ~ ~ + 6 ~ k > ,  

(61)  
A 3 h-f; ,  B2 = - 2 g f , + ~ ~ 6 , , k ~ k : ,  

B, = %,k; - hk: + k: f2 (  f, + 6,, k;), A,  = 2s1 f2, 

c = k5 g - a,, f 2 k 5  k:, c, = k: k:(6,, g + f,), 
then the quadratic can be written 

( A  - iA,) k4 - (B, + iB,) k2 + (C + iC,) = 0, (62)  

(63)  

Let k = y+ie, (64)  

which has the solution 

k2 = ${(A + iA2)/(A2 +A;)}{& + iB, (GI + iG,)*}, 
where GI B2, - 4AC - 4A2C2 - B; and G2 = 2B, B, - 4AC2 + 4A2C. 

then the z-dependence of the waves becomes exp (iyz -a) so that q / 2 n  is the 
number of waves per unit length, and e is the absorption coefficient. The phase 
velocity of the waves is up = o/y.  

In  a Culham Laboratory report to be issued soon the numerical solution of (63 )  
for wp and E will be discussed; here we shall just note some of the salient features, 
restricting our attention to the case when the damping caused by resistivity and 
neutrals are small. In  this case the subscripts 1 and 2 in (61 )  will denote the order 
of magnitude of the labelled quantities. The orders of A and C are not indicated 
because they depend on the numbers h and g, which do vanish at certain critical 
frequencies. 

If A is first order and positive, then correct to second order the above theory 
yields 

(66)  = (1/2h)  { 2 ~ , k %  - hk: (k:h2+ 4k5 Q2)*}, 

From (65 )  and (66 )  it is clear that the positive sign gives a slower wave then does 
the negative sign, and we shall therefore distinguish the two solutions as being 
the ‘slow’ ( + ) and ‘fast ’ ( - ) waves. At low frequencies h zz s2,, and the equations 
reduce to 

If either A or C is small, it  follows from (62 )  that 

k2 = B,/ (A- iA2)  (slow wave), k2 = (C+C,)/B, (fast wave). (69 )  

Suppose A is small, then for the slow wave 

372 = {B,/(A2 + A:)} { (A2 + A;)& + A},  2e2 = (B,/(A2 + A:)} { (A2+  A:)* -A} .  

From these, and neglecting second-order terms, we find that E has a maximum 
value of 

(70) 
Emax = %432/3/8) rC,/llfi at A = 74,143, 

@&it = ~ 1 { ~ 1 +  ( 2 / J 3 ) f 2 )  @%i- i.e. at  
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Similarly 7 has a maximum, and hence wp a minimum, 

(VpImin = 2/(8/32/3) Jf2.A a t  @:,it = sl(s1- (2/2/3)f21w%. (71) 

If there is no damping the absorption becomes infinite, and the slow wave 
cannot be propagated a t  frequencies above There is no resonance absorp- 
tion effect on the fast wave at  these critical frequencies. 

Now suppose C is small, then for the fast wave 

7 2  = ~{(c~+c;)*+c)/B,, €2 = g{(c2+C;)3-C)/Bl. 
At C = 0,  

and the wave-number is very small. Without damping, the fast wave is cut off 
sharply at C = k: g = 0,  i.e. at = ,/slkcvA. Damping reduces the sharpness 
of the cut-off frequency. 

r2 = k%(f2 + 81, g)/(s2, + Q2), 

9. Calculation of k, 

yield 
To calculate k, we need to use the boundary conditions. Now (31) and (57) 

u?/d = - { s ( k 2 + k ~ ) - k ~ [ l + i ~ ~ ( k 2 + k : ) ] l / k ~  

= - k ( k 2 + k : )  IR / { sk2-k~(1+ i s ,k2+ i s , , k : ) ) .  (72) 

First, suppose the walls are highly conducting, then (53) holds, and if V / d  is 
eliminated from (53) and (72) one arrives at a complicated equation determining 
k,. On dropping second-order quantities we get 

To complete the solution it remains only to use (72) to eliminate the ratio %'/d 
from (36) and (38) (see equations (80) below). 

Notice from (68) and (73) that when Q is small we must use the first right-hand 
side in (73) for the fast wave, and the second for the slow wave. Thus when S2 
is negligible (73) reduces to 

m + 0 JL(kcro) = 0 (fast wave), Jm(kcro) = 0 (slow wave); (74) 

m = 0 JA(kcro) = 0 (both waves). (75) 

The effect of a small ion-cyclotron term on the fast wave cut-off frequency 
can be computed as follows. On eliminating 72 from the first of (68) and (73) 
we get 

At Q = 0 this reduces to Jm(kcro) = 0,  which has a root kCl, say. Let k, = kcl + Akc 
be the corresponding root of (76), then to first order 

and the cut-off frequency .Jsl kcw, is reduced by an amount ,Isl Ak,v,. This is 
another form of a result due to Newcombe (1957) for fully ionized plasmas. 
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The theory for the case when the walls are poor conductors is much the same 
as above except that (73) is replaced by a more complicated relation which follows 
from (36), (38), (54) and (72). With a perfect insulator the two relations in (56) 
have to be satisfied. Now if we can find perturbations such that either (i) j, is 
negligibly small throughout the field ( j l r  - 0) ,  or (ii) B1,, B,, N 0, then with (i) 
the second of (56) is the dominating boundary condition, and the first can be 
ignored, while with (ii) the first of (56) is dominant and the second can be ignored. 
By examining equations (80) and (81) below we see that these two cases can occur 
only if m = 0,t and if in addition: 

Case (i) q(q2 + Ic;) Q < k,(sly2 - k:) (fast radial wave), 

with boundary condition BIT + ixo B,, = 0 ; (78) 

Case (ii) q2R, ykCQ < sly2-g (slow torsional wave), 

with boundary condition B I B  = 0. (79) 

It appears unlikely that perturbations intermediatein character canbe propagated 
with insulating walls, unless of course these walls behave in effect like conducting 
walls because of the presence of a current sheet. 

In the experimental work it is the magnetic field strengths that are measured 
and so for reference we give here the values of Blr, B I B ,  B,, obtained by eliminating 
%?/d from (36) and omitting second-order terms. For slow waves it is convenient 
to write 

while for fast waves 

10. The special case m = 0 

The experimental results so far obtained in the Culham Laboratory are for 
waves that are predominantly the m = 0 mode, and it is therefore useful to list 
the equations for this case. 

t We exclude combinations of waves having equal and opposite values of m because 
(see (77)) such waves have different phase velocities. 
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From (80) and (81), 

B1, = i&’qJh(kc~) = - i%?{q’Cl/(~,~ - g)}JA(kcr), 

Bl, = d{q(@’+ IC,2)/(s,q2 - k;)} Q2Jh(kcr) = - %‘JA(kcr), 

Bl, = kC#Jo@cr) = -%{~W(W2 - g)} kcJo(kcr), 
from which we observe that at low frequencies the slow wave is almost entirely 
a torsional one. However, near the critical frequency given by (71), 7 is large, 
Q M sl, and the ratio of the amplitude of B,, to B,, tends to unity; B,, remains 
small. 

Similarly equations (38) give 

,UjlT = - i d { q 2 ( q 2 +  k:)/(s,?p- k:)} QJA(kCT) = iq%JA(kcr), 

A,, = - ( q Z + k 3 d J A ( ~ A  = g{q(k,2+q2) Q/(s,+g)}J’(k I 
ru9.12: = - - @ v C ? ( Y Z  + k,2)/(s1qZ- k;)} Q J O ( W  = %kcJo(kcr). O c r ) ’ c  (83) 

The boundary conditions are 
both waves, conducting walls ( torsional wave, insulating walls 

(radial wave, insulating walls). 

Jh(kcr0) = 0 

qJ;(kcro) + kc~oJo(kcro)  = 0 

11. The effect of viscosity 
At very high temperatures viscosity contributes significantly to the wave 

damping. Such temperatures have not been achieved in the experiments carried 
out so far, but as it is hoped that hydromagnetic waves may have some value as 
a diagnostic technique for really hot plasmas, it is worth noting here the first- 
order effects of viscosity. The theory of $ 8  can be modified as follows. 

If the viscosity terms are retained as small, second-order terms, but the 
pressure terms are neglected, equation (27) becomes, correct to third-order terms, 

(k2s1-k: - i k ~ ~ - i i k ~ k ~ s I I ) { k ~ S 1 - g - i ( k 2 + k : ) f ~  -i&} 

f2’ = f 2 + S l ( k 2 + k W 1 Y I +  ( 1 - 4 Y J 7  

= k2(k2+k:)Q2(1-i$2),  (85) where 

] (86) 
= s1yI{sl(k2 + k,2)2 - k;(k2 + gk:)} - S,YlI(k2s, - 9 )  (p + k:) 

++Yn(k2+k,2){(1 -81) (k5-s,k2)-“S1f2/(1 + f ” l  (Ji2s1-g)), 

$2 = SlYI(k2+gk:) - s ,y , , (p+k:) .  

Comparing this with (60) and (61), which are exact for zero viscosity, we see that 
the order of the dispersion equation is considerably raised by the presence of 
viscosity. However, if the new terms are treated as small perturbations, we can 
ignore this change in order, and simply calculate the effects of these perturbations 
on the roots of the original quadratic. From (85) we find that the coefficients in 
(61) are thus modified to 

A = h ,  A ,  = 28, f ;  - Q22$2, 

B, = - 2gf i  + s1 a,, k: k; + s1 #, - k2Q2 $,, B, = 2slk: - hk:, 

c = ?c;g, c2 = k; k3SIl9 +fi) + $2, 
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where, as we are neglecting fourth-order terms, only the dominant terms in 
A ,  B, and C have been retained. With this modification the rest of the theory of 
5 8 is easily adjusted to allow for viscosity. 

Consider, for example, the damping of the slow and fast waves at  frequencies 
well below the critical values s1wCi. When the viscosity is zero, the second of 
(68) gives the damping or absorption coefficient. First, take the slow wave. The 
appropriate dispersion relation is obtained by equating the first factor in (85) 
to zero. To first order, k2 = k:/.s,, and using this to eliminate k2 from the second- 
order terms, we arrive a t  

E = (k;/2s2,.ll){fZ+S,,slk,2+(k~+slk,2) [S lYI+  (1 - ~ 1 ) Y n l ) .  

8 = @;/2~; . l lW2+ (ef+W,2) P l Y L +  (1-%)Y,ll* 

(88) 

Similarly from the second factor of (85) it follows that for the fast wave 

(89) 

It is interesting to note that for these waves the viscosity factor ye is absent, 
i.e. the viscosity involved is that which damps motions wholly normal to the 
magnetic field (vl). The other viscosity vII, which is considerably smaller than 
vl due to the influence of the magnetic field, will be effective only at  relatively 
high values of Q. 

12. The effect of gas pressure 
Suppose for simplicity that we have a plasma in which the resistivity and 

viscosity are negligible, but the pressures are not. In  this case the dispersion 
equation (27) reduces exactly to 

(90) 

(91) where 

This is a cubic in a, and as --a = kz+ k,2, to each of the three roots of (90) there 
correspond at least a pair of waves moving a t  different speeds, i.e. at  least six 
distinct waves in all. As the gas pressure falls, rm, I’ and r, tend to zero, and 
(90) becomes a linear equation in -a, the single root of which yields the pair of 
waves (‘fast ’ and ‘slow ’) discussed in 3 8. 

rm = r + At-r, = P o ~ ( P ~  r +pn0 r,). 

If the gas is fully ionized, s = 1, < = 0, and (90) reduces to the quadratic 

k w r a 2  + ( k 2 ~ 2  + (k; - ~ 2 )  + r(k; - k2y) -a + k;(k; - = 0, (92) 

and it is readily verified that if = p (see equation (52)) is small, one root of 
this yields the pair of hydromagnetic waves of 5 8, while the other yields the pair 
of acoustic waves k2 = l/r - k:, i.e. by (64) and (65), 

,up = f C{ 1 - k: C2/w2)-&. (93) 

In  general the roots of (92) yield complicated mixtures of hydromagnetic and 
acoustic waves. 
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Of more interest here is the way in which small but significant pressures affect 
the results of Q 8. In  this case we can ignore second-order terms like r, r, s, r, 
etc., and reduce (90) by (59) to the form 

{k2(s, - is,) - k:} {k,(si - is,) - g' - ik,2S2} = kZ(k2 + k,2) a,, (94) 

with S; = sl( 1 + k,2 Fu), 9' z k: - s; k,2 and Fa = + {( 1 - s,)/sl} rn. (95) 

Thus in the notation of (61) and (62) we now have the coefficients 

A = 8,s; - Q2, B, = (8, + ~ i )  k5 - s,s'kZ + Q'k;, C = k: g', (96) 

correct to third order, with the coefficients A,, B,, C, unchanged. Clearly we can 
linearly superimpose pressure and viscosity effects by combining the coefficients 
A ,  B, and C from (96) with A,, B, and C, from (87). 

Notice from the first factor of (94) that near Q = 0 the slow wave is unaffected 
by gas pressure, a result which is true for all values of the pressure (cf. (90)). 
The fast wave near I2 = 0 is found from the second factor of (94) to have a wave- 
number 

This work was carried out in the Culham Laboratory, Berkshire, during 1960, 
when the author was a Research Associate in the Laboratory on leave from the 
University of New South Wales. I am grateful to Dr R. J. Bickerton and Mr D. F. 
Jephcott of the Culham Laboratory for many valuable discussions on the 
problem. I am also indebted to Dr Roger Tayler, Department of Applied Mathe- 
matics and Theoretical Physics, University of Cambridge, whose careful 
refereeing of this paper has helped me improve it in several places. 
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